PRELIMINARY DATA SHEET

OCMOS FET™

PS7841C-A11,PS7841C-A15

FOR OPTICAL DAA, CURRENT LIMIT TYPE 16-PIN SSOP OCMOS FET

DESCRIPTION

The PS7841C-A11 and PS7841C-A15 are solid state relays for optical DAA (Data Access Arrangement). They have an OCMOS FET with current control circuit, photocoupler, diode bridge and darlington transistor.

Current control circuit of OCMOS FET protects output circuit and this device from thermal breakdown.

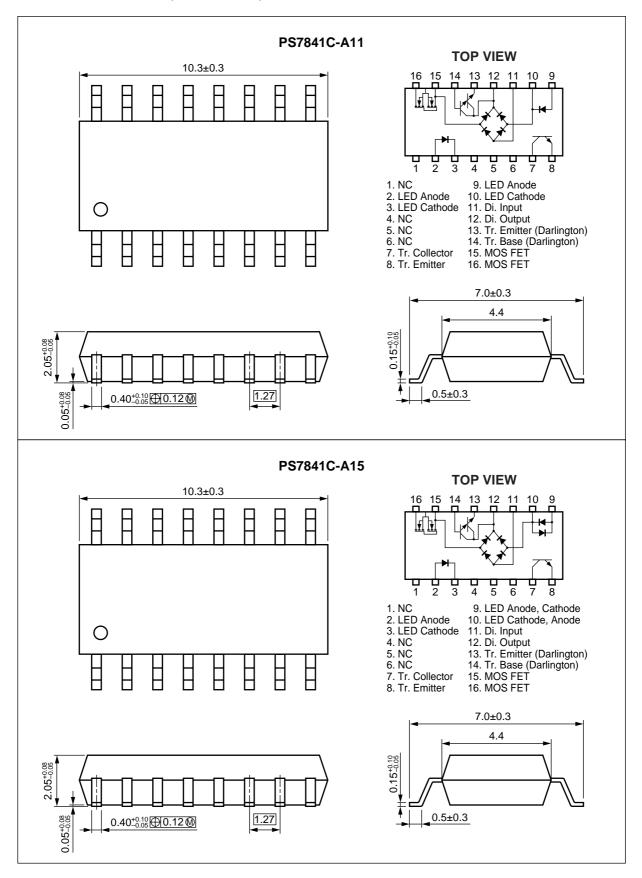
This device is suitable for analog signal control applications such as laptop PCs, modem cards, voice telephony and fax machines.

FEATURES

- · For optical DAA circuit
 - OCMOS FET
 - Photocoupler DC input response : PS7841C-A11

AC input response: PS7841C-A15

- Diode bridge
- Darlington transistor
- Limit Current (I_{LMT} = 180 mA TYP.)
- Low LED Operating Current (IF = 2 mA)
- Small and thin package (16-pin SSOP: 255 mil, Pin pitch = 1.27 mm, Height = 2.1 mm)
- Ordering number of taping product: PS7841C-A11-F3, F4, PS7841C-A15-F3, F4


APPLICATIONS

- · Laptop PC, PDA
- · Modem card
- · Telephone, FAX

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

PACKAGE DIMENSIONS (in millimeters)

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C, unless otherwise specified)

Parameter				Ratings	Unit
OCMOS FET	Diode	Forward Current (DC)	lF	50	mA
(Pin No. 2, 3, 15, 16)		Reverse Voltage	VR	5.0	V
		Power Dissipation	PD	50	mW
		Peak Forward Current *1	IFP	1	А
	MOS FET	Break Down Voltage	VL	400	V
		Continuous Load Current	lL	120	mA
		Pulse Load Current ² (AC/DC Connection)	ILP	250	mA
		Power Dissipation	Po	430	mW
Photocoupler	r Diode Forward Current		lF	50	mA
(Pin No. 7, 8, 9, 10)		Reverse Voltage*3	VR	5.0	V
		Power Dissipation	Po	50	mW
		Peak Forward Current 1	IFP	1	А
Collector Curre		Collector to Emitter Voltage	Vceo	40	V
		Collector Current	lc	80	mA
		Power Dissipation	Pc	50	mW
Diode Bridge	Forward Cu	ırrent	lF	140	mA
(Pin No. 10, 11, 12, 15)	Reverse Vo	oltage	VR	100	V
Darlington Transistor	Collector to	Emitter Voltage	Vceo	40	V
(Pin No. 12, 13, 14)	Collector C	urrent	lc	120	mA
	Power Diss	ipation	Pc	500	mW
Isolation Voltage⁴				1 500	Vr.m.s.
Total Power Dissipation				650	mW
Operating Ambient Temperature			TA	-40 to +80	°C
Storage Temperature				-40 to +100	°C

^{*1} PW = 100 μ s, Duty Cycle = 1 %

RECOMMENDED OPERATING CONDITIONS (TA = 25 °C)

Parameter		Symbol	MIN.	TYP.	MAX.	Unit
OCMOS FET	LED Operating Current	lF	2	10	20	mA
	LED Off Voltage		0		0.5	V

^{*2} PW = 100 ms, 1 shot

^{*3} PS7841C-A11 only

^{*4} AC voltage for 1 minute at $T_A = 25$ °C, RH = 60 % between input and output

ELECTRICAL CHARACTERISTICS (TA = 25 °C)

OCMOS FET (Pin No. 2, 3, 15, 16)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Diode	Forward Voltage	VF	IF = 10 mA		1.2	1.4	V
MOS FET	Off-state Leakage Current	loff	V _D = 400 V			1.0	μΑ
Coupled	LED On-state Current	IFon	IL = 120 mA			2.0	mA
	On-state Resistance	Ron1	IF = 10 mA, IL = 10 mA		26	35	Ω
		Ron2	IF = 10 mA, IL = 120 mA		22	30	
	Turn-on Time	ton	I _F = 10 mA, V _O = 5 V, PW ≥ 10 ms		0.3	1.0	ms
	Turn-off Time	toff			0.04	0.2	
	Isolation Resistance	Ri-o	Vi-o = 500 Vdc	10°			Ω
	Isolation Capacitance	C _{I-O}	V = 0 V, f = 1 MHz		1.1		pF
	Limit Current	Ішт	IF = 10 mA, t = 5 ms, V _L = 6 V	155	180	210	mA

PHOTOCOUPLER (Pin No. 7, 8, 9, 10)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Diode	Forward Voltage	VF	IF = 10 mA		1.2	1.4	V
Transistor	Collector to Emitter Dark Current	Iceo	Vce = 40 V, I _F = 0 mA			0.1	μΑ
Coupler	Current Transfer Ratio (Ic/IF)	CTR	IF = 5 mA, VcE = 5 V	50	200	400	%
	Collector Saturation Voltage	VCE (sat)	IF = 10 mA, Ic = 2 mA		0.1	0.3	V
	Rise Time	t r	$Vcc = 5 \text{ V}, \text{ Ic} = 2 \text{ mA}, \text{ RL} = 100 \Omega$		3.0		μs
	Fall Time	t f			5.0		
	Isolation Resistance	R _{I-O}	Vi-o = 500 Vdc	10 ¹¹			Ω
	Isolation Capacitance	C _{I-O}	V = 0 V, f = 1 MHz		0.4		pF

DIODE BRIDGE (Pin No. 10, 11, 12, 15)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Forward Voltage	VF	IF = 120 mA		0.9	1.2	V
Reverse Current	IR	V _R = 100 V			10	μΑ

DARLINGTON TRANSISTOR (Pin No. 12, 13, 14)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Collector Saturation Voltage	VCE (sat)	Ic = 120 mA, IB = 100 μ A		1.0	1.4	V
Collector to Emitter Dark Current	Icex	I _B = 0 mA, V _{CE} = 30 V		0.01	1.0	μΑ
DC Current Gain	hfE	Ic = 120 mA, VcE = 10 V	10 000	35 000		

[MEMO]

[MEMO]

[MEMO]

CAUTION

Within this device there exists GaAs (Gallium Arsenide) material which is a harmful substance if ingested. Please do not under any circumstances break the hermetic seal.

OCMOS FET is a trademark of NEC Corporation.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

M7 98.8